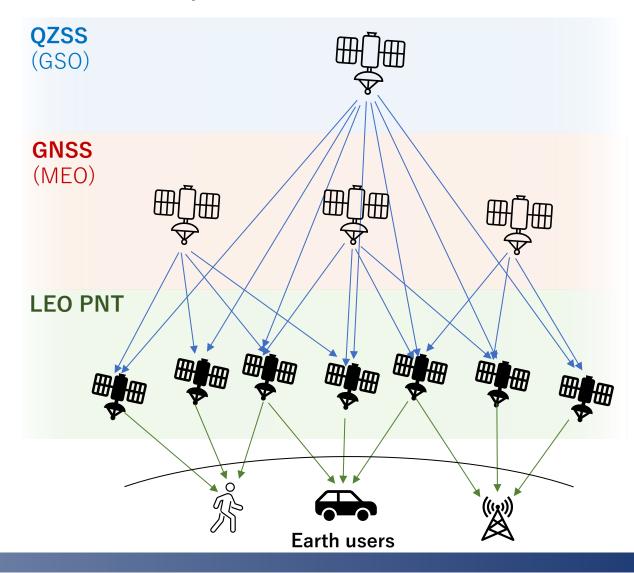


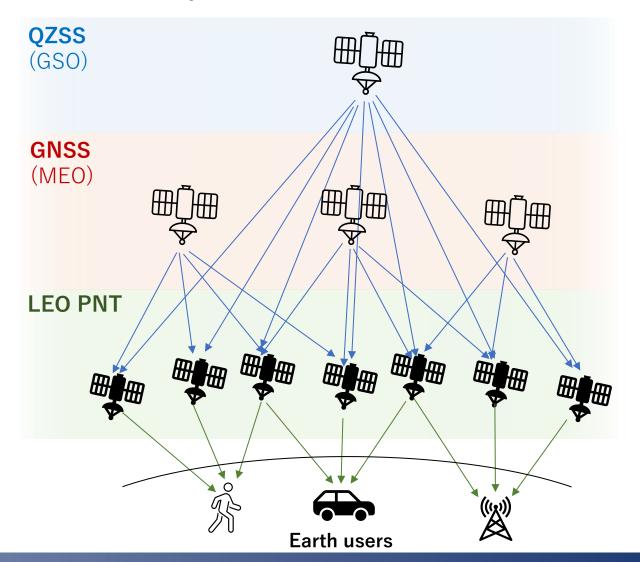
JAXA's Current Activities and Future Perspectives on LEO PNT Systems

Galletti Elena

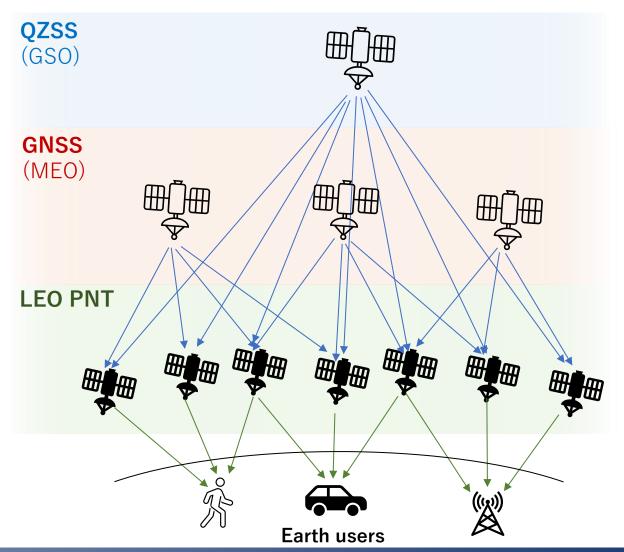
第10回 月測位研究会 2025/6/3


Limitations of GNSS/RNSS

GNSS present vulnerabilities and limitations preventing standalone provision of resilient high-performant PNT



Multi-layered structure of PNT systems:

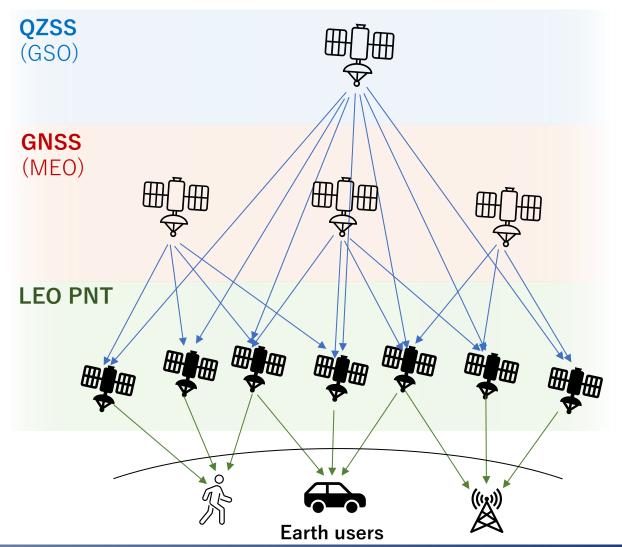

Multi-layered structure of PNT systems:

- → Lower free space loss
- → Can use of higher frequencies
 - → Frequency diversity
 - → Less interference
 - → More available bandwidth

Multi-layered structure of PNT systems:

Faster geometry change:

- → Faster PPP convergence
- → Shorter outages from blockages
- → Multipath whitening


- → Lower free space loss
- → Can use of higher frequencies
 - → Frequency diversity
 - → Less interference
 - → More available bandwidth

Multi-layered structure of PNT systems:

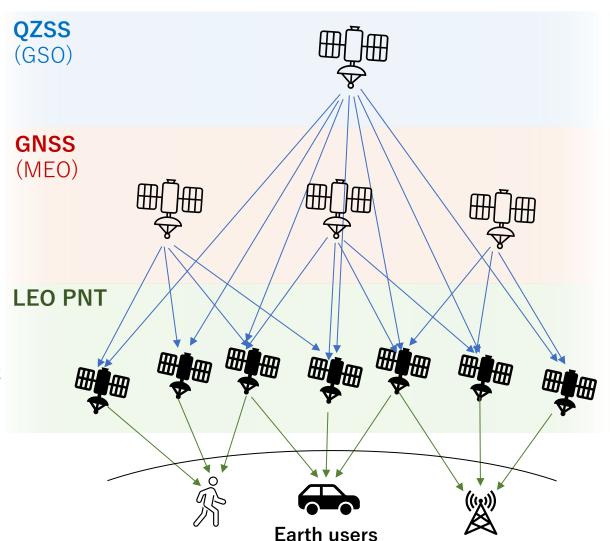
Low SWaP satellites:

- → Shorter innovation cycles
- → Lower cost

Faster geometry change:

- → Faster PPP convergence
- → Shorter outages from blockages
- → Multipath whitening

- → Lower free space loss
- → Can use of higher frequencies
 - → Frequency diversity
 - → Less interference
 - → More available bandwidth

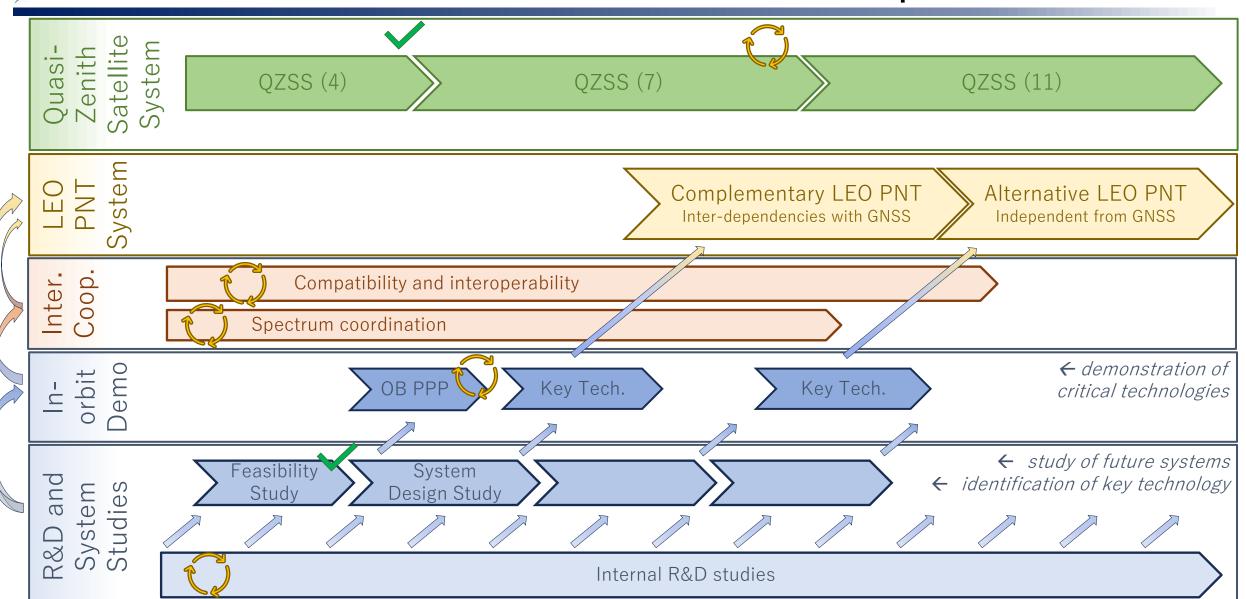

Multi-layered structure of PNT systems:

Low SWaP satellites:

- → Shorter innovation cycles
- → Lower cost

Onboard GNSS receiver on LEO:

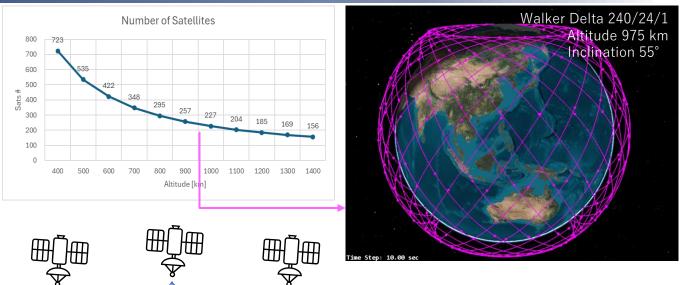
- → Real-time accurate position / clock
 - → Leaner ground segment
- → Monitoring of GNSS signals

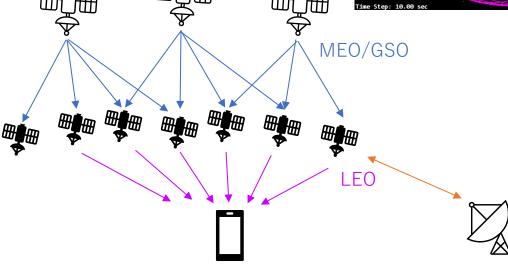

Faster geometry change:

- → Faster PPP convergence
- → Shorter outages from blockages
- → Multipath whitening

- → Lower free space loss
- → Can use of higher frequencies
 - → Frequency diversity
 - → Less interference
 - → More available bandwidth

JAXA LEO PNT Roadmap


System Architecture


Space Segment:

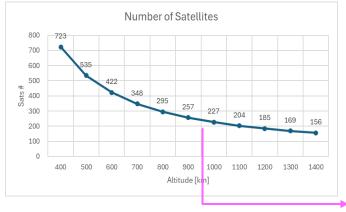
- Minimum 4 satellites in view
- PDOP lower than 2
- Low SWaP C-band Navigation Payload
- On-board GNSS Rx
- Inter-satellite Links

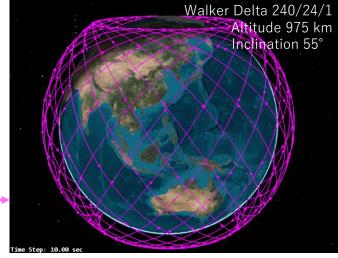
Ground Segment:

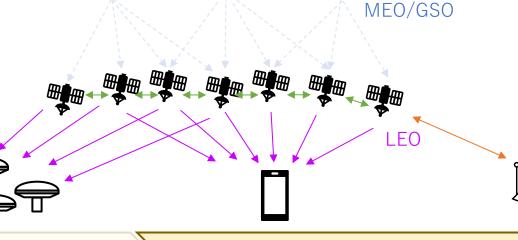
- Sparse control station network
- Dense monitoring station network

Complementary LEO PNT Inter-dependencies with GNSS

Alternative LEO PNT Independent from GNSS


System Architecture


Space Segment:

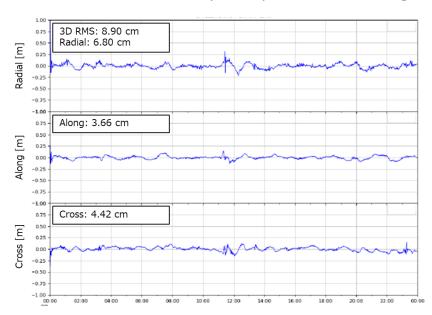

- Minimum 4 satellites in view
- PDOP lower than 2
- Low SWaP C-band Navigation Payload
- On-board GNSS Rx
- Inter-satellite Links

Ground Segment:

- Sparse control station network
- Dense monitoring station network

Complementary LEO PNT Inter-dependencies with GNSS

Alternative LEO PNT Independent from GNSS



GNSS-based ODTS for LEO PNT

Achievable positioning accuracy for LEO satellites using GNSS: ~10cm (3D RMS)

Demonstration by analysis

with real in-orbit data post-processed on ground

SW used: MALIB LEO Data used: Sentinel-6A

Configuration: Galileo+GPS, dual-frequency, L6E data

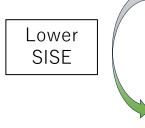
In-orbit demonstration (ongoing)

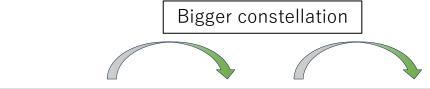
with onboard PPP equipment flying on QPS-SAR-10 satellite

打ち上げ: 2025/05/17

機器

- GNSS:多周波 (L1、L2、L5信号), QZSSのL6E信号に対応
- オンボードコンピュータ:ソフトウェア「MALIB LEO」を搭載
- コーナキューブリフレクタ「Mt.FUJI」: 精度評価のために


詳細はこちら: https://www.satnavi.jaxa.jp/ja/project/on-board-ppp/

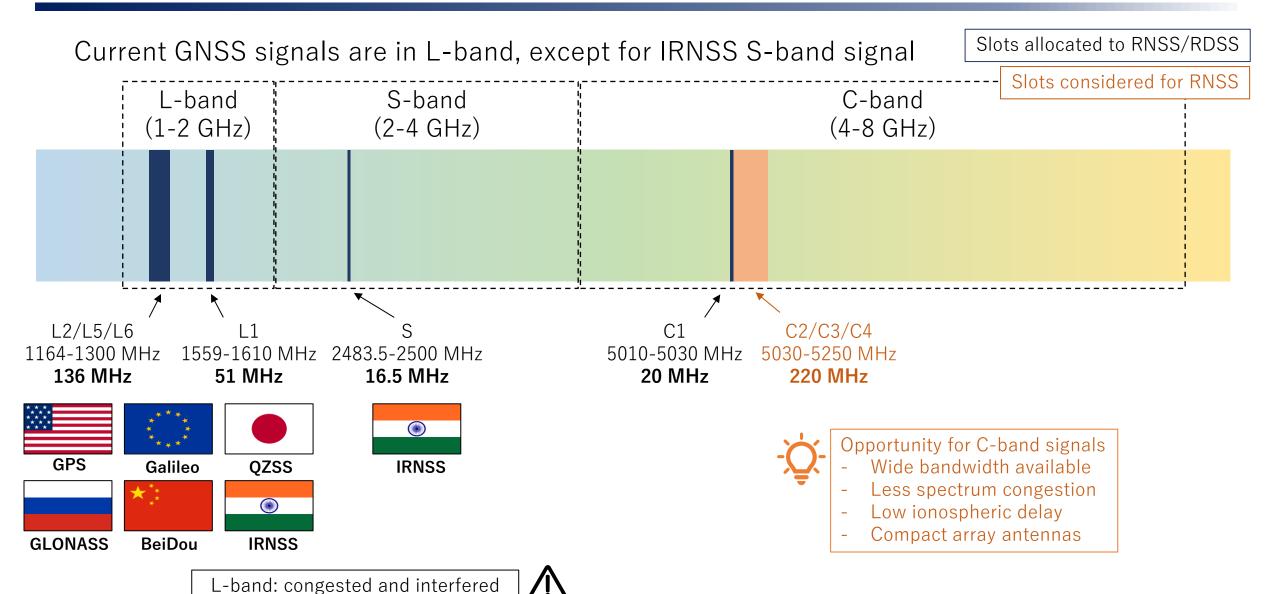


Carrier Based Positioning

Faster PPP convergence is enabled by the fast geometry changes of the LEO constellation

- With GNSS:
 - typical PPP convergence is 15-30 mins
- With GNSS + LEO constellation:
 - less than 5 mins can be achieved
- With GNSS + large LEO constellation:
 - 1-3 mins can be achieved

	120-satellite constellation,	240-satellite constellation,	480-satellite constellation, SISE=20cm		
	SISE=20cm	SISE=20cm			
< 1 min	0%	1%	13%		
< 1 mins 30 secs	3%	22%	63%		
< 2 mins	23%	67%	93%		
< 2 mins 30 secs	57%	96%	100%		
< 3 mins	78%	99%	100%		
< 3 mins 30 secs	90%	100%	100%		
< 4 mins	96%	100%	100%		
< 4 mins 30 secs	99%	100%	100%		
< 5 mins	100%	100%	100%		


	120-satellite constellation, SISE=10cm	240-satellite constellation, SISE=10cm	480-satellite constellation, SISE=10cm		
< 1 min	8%	33%	77%		
< 1 mins 30 secs	58%	90%	99%		
< 2 mins	89%	99%	100%		
< 2 mins 30 secs	98%	100%	100%		
< 3 mins	99%	100%	100%		
< 3 mins 30 secs	100%	100%	100%		
< 4 mins	100%	100%	100%		
< 4 mins 30 secs	100%	100%	100%		
< 5 mins	100%	100%	100%		

Convergence to horizontal accuracy of less than 10 cm is considered

Source: Impact of Signal-In-Space Error on LEO PNT Augmented PPP Convergence, Murata, 2024

Radio Navigation Spectrum

Frequency Band Selection

Each of the candidate frequency bands presents pros and cons:

Frequency Band	L-band	S-band	C-band	
Available bandwidth	136 MHz (1164-1300 MHz) 51 MHz (1559-1610 MHz)	16.5 MHz (2483.5-2500 MHz)	20 MHz (5010-5030 MHz) [240 MHz (5010-5250 MHz)]	
Spectrum outlook	Crowded	Promising	Promising	
Free Space Loss* (@975km)	153 – 168 dB	160 – 172 dB	166 – 178 dB	
Other propagation losses** (troposphere, rainfall, clouds)	<1 dB	1-2dB	5-6 dB	
Ionospheric delay [residual after correction***]	up to ~30m [3-12m]	up to ~14m [1.3-5m]	up to ~3m [0.3-1.1m]	
Technology Readiness (transmitter and receiver)	Very mature	Partially available	Low maturity	
Antenna array size (16-element, λ/2 spacing, 10dBi@90°)	(28-38) x (28-38) cm	18 x 18 cm	9 x 9 cm	

^{*}FSL values range accounts for user elevation range 0-90 degrees and center frequency allowed range in each frequency band.

A Role for C-band? https://www.insidegnss.com/auto/mayjune07 064-073.pdf

The case for LEO GNSS at C-band https://insidegnss.com/the-case-for-leo-gnss-at-c-band/

A Search for Spectrum: GNSS Signals in S-band Part 1 Part 2

^{**}References: ITU-R P.676-12, P.618-13, P.838-3, P.837-7, P.840-8

^{***}Assuming correction via a-priori model with 20 TECU model accuracy (equivalent to NeQuick G model)

Ranging Error Budget

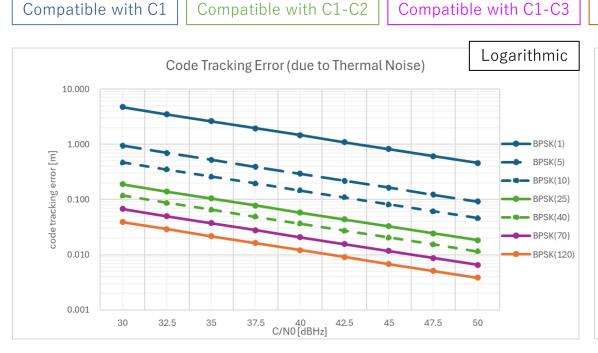
Ranging error improvement thanks to low ionospheric delay in C-band

Frequency Band	L-band			C-band				
Centre frequency [MHz]	1575.42			5020.00				
Elevation [deg]	10	30	60	90	10	30	60	90
Orbit [m]								
Clock [m]	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
HW Bias [m]								
lonosphere [m]	34.42	22.29	13.35	9.74	3.39	2.20	1.31	0.96
lonosphere (after correction) [m]	11.47	7.43	4.45	3.25	1.13	0.73	0.44	0.32
Troposphere [m]	0.03	0.01	0.01	0.01	0.03	0.01	0.01	0.01
Channel (code) [m]	0.25	0.10	0.08	0.06	0.25	0.10	0.08	0.06
Total [m]	34.43	22.29	13.35	9.74	3.41	2.21	1.33	0.98
Total (after iono correction) [m]	11.48	7.43	4.45	3.25	1.17	0.77	0.49	0.38

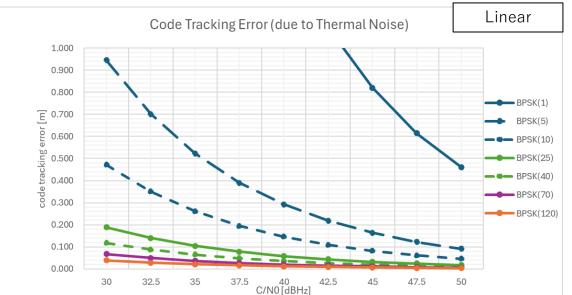
Underlying assumptions:

- BPSK(5) signal for both frequency bands
- Ionospheric model with 20 TECU accuracy*
- GNSS-based ODTS errors
- Multipath contribution, which is expected to be lower in C-band, is not reflected in this table
- * Equivalent to NeQuick G model: https://www.gsc-europa.eu/sites/default/files/sites/all/files/Galileo_Ionospheric_Model.pdf

Opportunity for accurate single-frequency code-based positioning



Code Tracking Error


The tracking error due to thermal noise (DLL jitter) is lower for larger bandwidths:

- The potential new allocation in C-band enables reducing DLL jitter by 4-12 times
- Accurate single frequency code measurements are possible

Compatible with C1-C4

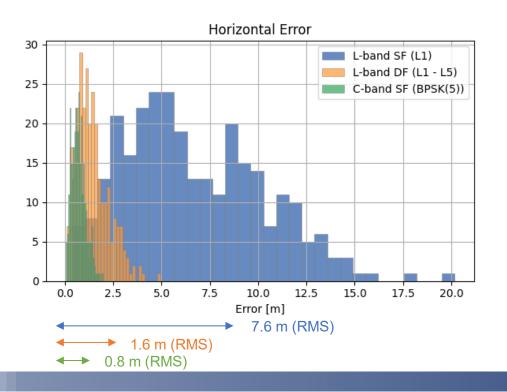
A required bandwidth equal to twice the chip rate is considered.

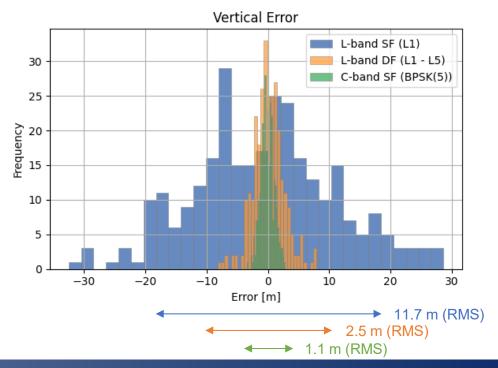
Code Based Positioning

For many applications, achieving the ultimate precision is less relevant than:

- Robust PVT solution available in challenging environments (such as urban canyons)
- Fast convergence and recovery from environmental changes
- Short outages

Single frequency reduces the receiver complexity / cost





Accurate single-frequency measurements

Example of code-based positioning errors improvement:

Based on simulated data for one user location in Japan (36° N, 140° E) in open-sky conditions

International Coordination

We are coordinating with international GNSS and LEO PNT providers:

- Spectrum aspects:
 - Frequency coordination and spectrum usage
 - Allocation of new bands to RNSS (5030-5250MHz)
- Compatibility (use separately or together without interfering):
- Interoperability (use together for better user performance):
 - System Interoperability
 - · Reference frame and time aligned to standard
 - Transmission of time offset (if needed)
 - Signal interoperability:
 - Center frequencies
 - · Signal structure, waveform, codes, data

LEO PNT

An approach similar to GNSS is needed

Trade-off between:

- similarity to enable simple receiver technology
- diversity to enhance frequency/signal diversity and reduce vulnerability of combined solution

Key Messages

- JAXA is actively researching LEO PNT systems that can complement GNSS, and the related enabling technologies
- Progressive development of a GNSS-independent LEO layer is envisioned to contribute to resilient multi-layer PNT services
- Navigation signals in higher frequencies (C-band) are being studied to exploit low ionospheric delays and opportunity for wideband signals
- Coordination efforts are underway for radio compatibility and spectrum aspects (ITU) and system / signal interoperability aspects (ICG)

Thank you for the attention!

Galletti Elena | galletti.elena@jaxa.jp

第10回 月測位研究会 2025/6/3